Characterizing Nanoemulsions Prepared by High Pressure Homogenization Under Various Emulsifying Conditions

Today, nanotechnology is recognized as enabling the manipulation of matter at the atomic and molecular level to create new materials with functional characteristics that are markedly different from conventional materials.1 Nanoemulsions, for example, can be used to control the rate at which assets are delivered to the skin. This control is achieved by incorporating materials within the nanoemulsion according to their compatibility with it, which obviously relies on their physical-chemical structure. Indeed, a great deal of attention has been dedicated recently to colloidal systems for the delivery of active ingredients because they significantly reduce the side effects of drugs and increase their bioavailability.2

Besides delivery, nanoemulsions exhibit improved stability over conventional systems, such as liposomes or solid lipid nanoparticles, since their small particle sizes are less affected by gravity and less inclined to settle during storage, thus preventing flocculation and increasing shelf life.3 The particles also prevent coalescence due to their uniform shape. Furthermore, the significant thickness of the particle film, relative to the particle diameter, prevents its thinning or rupture; and wetting, spreading and penetration can be improved as a result of the low surface tension.4

More in Cosmetic Ingredients